DataSheet.es    


PDF AD8237 Data sheet ( Hoja de datos )

Número de pieza AD8237
Descripción True Rail-to-Rail Instrumentation Amplifier
Fabricantes Analog Devices 
Logotipo Analog Devices Logotipo



Hay una vista previa y un enlace de descarga de AD8237 (archivo pdf) en la parte inferior de esta página.


Total 29 Páginas

No Preview Available ! AD8237 Hoja de datos, Descripción, Manual

Data Sheet
Micropower, Zero Drift, True Rail-to-Rail
Instrumentation Amplifier
AD8237
FEATURES
Gain set with 2 external resistors
Can achieve low gain drift at all gains
Ideal for battery powered instruments
Supply current: 115 µA
Rail-to-rail input and output
Zero input crossover distortion
Designed for excellent dc performance
Minimum CMRR: 106 dB
Maximum offset voltage drift: 0.3 µV/°C
Maximum gain error: 0.005% (all gains)
Maximum gain drift: 0.5 ppm/°C (all gains)
Input bias current: 1 nA guaranteed to 125°C
Bandwidth mode pin (BW) to adjust compensation
8 kV HBM ESD rating
RFI filter on-chip
Single-supply operation: 1.8 V to 5.5 V
8-lead MSOP package
APPLICATIONS
Bridge amplification
Pressure measurement
Medical instrumentation
Thermocouple interface
Portable systems
Current measurement
GENERAL DESCRIPTION
The AD8237 is a micropower, zero drift, rail-to-rail input and
output instrumentation amplifier. The relative match of two
resistors sets any gain from 1 to 1000. The AD8237 has excellent
gain accuracy performance that can be preserved at any gain
with two ratio-matched resistors.
The AD8237 employs the indirect current feedback architecture to
achieve a true rail-to-rail capability. Unlike conventional in-amps,
the AD8237 can fully amplify signals with common-mode voltage
at or even slightly beyond its supplies. This enables applications
with high common-mode voltages to use smaller supplies and
save power.
The AD8237 is an excellent choice for portable systems. With a
minimum supply voltage of 1.8 V, a 115 µA typical supply current,
and wide input range, the AD8237 makes full use of a limited
power budget, yet offers bandwidth and drift performance suitable
for bench-top systems.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibilityisassumedbyAnalogDevices for itsuse,nor foranyinfringementsofpatentsor other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners.
PIN CONFIGURATION
AD8237
BW 1
+IN 2
+
8 VOUT
7 FB
–IN 3
+ 6 REF
–VS 4
TOP VIEW
(Not to Scale)
5 +VS
Figure 1.
Table 1. Instrumentation Amplifiers by Category1
General
Purpose
Zero
Drift
Military
Grade Micropower
AD8421
AD8237 AD620 AD8237
AD8221/AD8222 AD8231 AD621 AD8420
AD8220/AD8224 AD8293 AD524 AD8235/AD8236
AD8228
AD8553 AD526 AD627
AD8295
AD8556 AD624
AD8226
AD8557
Digital
Gain
AD8250
AD8251
AD8253
AD8231
1 See www.analog.com for the latest instrumentation amplifiers.
The AD8237 is available in an 8-lead MSOP package. Performance
is specified over the full temperature range of −40°C to +125°C.
6
AD8237
5
4
TRADITIONAL IN-AMP
(RAIL-TO-RAIL OUT)
G = 100
VS = 5V
VREF = 2.5V
3
2
1
0
–1
01 2 3 4 5
OUTPUT VOLTAGE (V)
Figure 2. Input Common-Mode Voltage vs. Output Voltage, +VS = 5 V, G = 100
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2012 Analog Devices, Inc. All rights reserved.

1 page




AD8237 pdf
AD8237
Data Sheet
Parameter
Settling Time 0.01%
Low Bandwidth Mode
G=1
G = 10
G = 100
G = 1000
High Bandwidth Mode
G = 10
G = 100
G = 1000
Slew Rate
Low Bandwidth Mode
High Bandwidth Mode
EMI Filter Frequency
GAIN2
Gain Range3
Gain Error
Gain Error vs. VCM
Gain vs. Temperature
Gain Nonlinearity
G = 1, G = 10
G = 100
G = 1000
OUTPUT
Output Swing
RL = 10 kΩ to Midsupply
RL = 100 kΩ to Midsupply
Short-Circuit Current
POWER SUPPLY
Operating Range
Quiescent Current
TEMPERATURE RANGE
Specified
Test Conditions/Comments
4 V output step
Pin 1 connected to −VS
Pin 1 connected to +VS
Min
G = 1 + (R2/R1)
VOUT = 0.1 V to 4.9 V, G = 1 to G = 1000
TA = −40°C to +125°C
VOUT = 0.2 V to 4.8 V, RL = 10 kΩ to ground
1
Typ Max
Unit
80
100
440
4
80
100
820
0.05
0.15
6
1000
0.005
15
0.5
3
6
10
µs
µs
µs
ms
µs
µs
µs
V/µs
V/µs
MHz
V/V
%
ppm/V
ppm/°C
ppm
ppm
ppm
TA = +25°C
TA = −40°C to 125°C
TA = +25°C
TA = −40°C to 125°C
TA = +25°C
TA = −40°C to +125°C
−VS + 0.05
−VS + 0.07
−VS + 0.02
−VS + 0.03
4
1.8
115
−40
+VS − 0.05
+VS − 0.07
+VS − 0.02
+VS − 0.03
V
V
V
V
mA
5.5 V
130 µA
150 µA
+125
°C
1 Specifications apply to input voltages between 0 V and 5 V. When measuring voltages beyond the supplies, there is additional offset error, bias currents increase, and
input impedance decreases, especially at higher temperatures.
2 For G > 1, errors from the external resistors, R1 and R2, must be added to these specifications, including error from the FB pin bias current.
3 The AD8237 has only been characterized for gains of 1 to 1000; however, higher gains are possible.
Rev. 0 | Page 4 of 28

5 Page





AD8237 arduino
AD8237
6
G=1
VREF = 0V
5
VS = 5V
RL = 10kΩ
4
3
2
1 VS = 1.8V
0
–1
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
OUTPUT VOLTAGE (V)
Figure 10. Input Common-Mode Voltage vs. Output Voltage,
G = 1, VREF = 0 V, VS = 5 V and VS = 1.8 V, RL = 10 kΩ to Ground
6 G = 100
VREF = 0V
5
VS = 5V
RL = 10kΩ
4
3
VS = 1.8V
2
1
0
–1
01 23 4 5 6
OUTPUT VOLTAGE (V)
Figure 11. Input Common-Mode Voltage vs. Output Voltage,
G = 100, VREF = 0 V, VS = 5 V and VS = 1.8 V, RL = 10 kΩ to Ground
4
VS = ±2.5V
G=1
3
VREF = 0V
RL = 5kΩ
2
1
0 VS = ±0.9V
–1
–2
–3
–4
–3 –2 –1
0
1
2
3
VOLTAGE OUTPUT (V)
Figure 12. Input Common-Mode Voltage vs. Output Voltage,
G = 1, VREF = 0 V, VS = ±2.5 V and VS = ±0.9 V, RL = 5 kΩ to Ground
Data Sheet
4
VS = ±2.5V
3
2
1
0 VS = ±0.9V
–1
–2
–3 G = 100
VREF = 0V
–4 RL = 5kΩ
–3 –2 –1
0
1
2
3
OUTPUT VOLTAGE (V)
Figure 13. Input Common-Mode Voltage vs. Output Voltage,
G = 100, VREF = 0 V, VS = ±2.5 V and VS = ±0.9 V, RL = 5 kΩ to Ground
5.0
–40°C
4.5 +25°C
+85°C
4.0 +105°C
+125°C
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
1.8 2.3 2.8 3.3 3.8 4.3 4.8
SUPPLY VOLTAGE (V)
Figure 14. Maximum Differential Input vs. Supply Voltage
5
4
–VS
3
2
1
IB
0
–1 IB+
–2
+VS
–3
–4
REPRESENTATIVE SAMPLE
–5
–3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5 3.0
COMMON-MODE VOLTAGE (V)
Figure 15. Input Bias Current vs. Common-Mode Voltage
Rev. 0 | Page 10 of 28

11 Page







PáginasTotal 29 Páginas
PDF Descargar[ Datasheet AD8237.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
AD823Dual/ 16 MHz/ Rail-to-Rail FET Input AmplifierAnalog Devices
Analog Devices
AD8230Precision Instrumentation AmplifierAnalog Devices
Analog Devices
AD8231Digital Programmable Instrumentation AmplifierAnalog Devices
Analog Devices
AD8232Heart Rate Monitor Front EndAnalog Devices
Analog Devices

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar