Datenblatt-pdf.com


ADSP-BF592 Schematic ( PDF Datasheet ) - Analog Devices

Teilenummer ADSP-BF592
Beschreibung Blackfin Embedded Processor
Hersteller Analog Devices
Logo Analog Devices Logo 




Gesamt 30 Seiten
ADSP-BF592 Datasheet, Funktion
www.DataSheet.in
Preliminary Technical Data
FEATURES
Up to 400 MHz high-performance Blackfin processor
2 16-bit MACs, two 40-bit ALUs, four 8-bit video ALUs,
40-bit shifter
RISC-like register and instruction model for ease of
programming and compiler-friendly support
Advanced debug, trace, and performance monitoring
Accepts a wide range of supply voltages for internal and I/O
operations. See Operating Conditions on Page 18
Off-chip voltage regulator interface
64-lead (9 mm × 9 mm) LFCSP package
MEMORY
68K bytes of core-accessible memory:
(See Table 1 on Page 3 for L1 and L3 memory size details)
64K byte L1 instruction ROM
Flexible booting options from internal L1 ROM and SPI mem-
ory or from host devices including SPI, PPI, and UART
Memory management unit providing memory protection
Blackfin
Embedded Processor
ADSP-BF592
PERIPHERALS
4 32-bit timers/counters, three with PWM support
2 dual-channel, full-duplex synchronous serial ports (SPORT),
supporting eight stereo I2S channels
2 Serial Peripheral Interface (SPI) compatible ports
1 UART with IrDA support
Parallel peripheral interface (PPI), supporting ITU-R 656
video data formats
Two-wire interface (TWI) controller
9 peripheral DMAs
2 memory-to-memory DMA channels
Event handler with 28 interrupt inputs
32 general-purpose I/Os (GPIOs), with programmable
hysteresis
Debug/JTAG interface
On-chip PLL capable of frequency multiplication
VOLTAGE REGULATOR INTERFACE
B
WATCHDOG TIMER
JTAG TEST AND EMULATION
PERIPHERAL
ACCESS BUS
INTERRUPT
CONTROLLER
L1 INSTRUCTION L1 INSTRUCTION
ROM
SRAM
L1 DATA
SRAM
DMA
CONTROLLER
DCB
DMA
ACCESS
BUS
DEB
BOOT
ROM
Figure 1. Processor Block Diagram
SPORT1
PPI
TIMER2–0
UART
SPI0
SPORT0
SPI1
TWI
PORT F
GPIO
PORT G
Blackfin and the Blackfin logo are registered trademarks of Analog Devices, Inc.
Rev. PrC
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 © 2010 Analog Devices, Inc. All rights reserved.






ADSP-BF592 Datasheet, Funktion
www.DataSheet.in
ADSP-BF592
• Nonmaskable Interrupt (NMI) – The NMI event can be
generated by the software watchdog timer or by the NMI
input signal to the processor. The NMI event is frequently
used as a power-down indicator to initiate an orderly shut-
down of the system.
• Exceptions – Events that occur synchronously to program
flow (in other words, the exception is taken before the
instruction is allowed to complete). Conditions such as
data alignment violations and undefined instructions cause
exceptions.
• Interrupts – Events that occur asynchronously to program
flow. They are caused by input signals, timers, and other
peripherals, as well as by an explicit software instruction.
Each event type has an associated register to hold the return
address and an associated return-from-event instruction. When
an event is triggered, the state of the processor is saved on the
supervisor stack.
The processor event controller consists of two stages: the core
event controller (CEC) and the system interrupt controller
(SIC). The core event controller works with the system interrupt
controller to prioritize and control all system events. Conceptu-
ally, interrupts from the peripherals enter into the SIC and are
then routed directly into the general-purpose interrupts of the
CEC.
Core Event Controller (CEC)
The CEC supports nine general-purpose interrupts (IVG15–7),
in addition to the dedicated interrupt and exception events. Of
these general-purpose interrupts, the two lowest-priority
interrupts (IVG15–14) are recommended to be reserved for
software interrupt handlers, leaving seven prioritized interrupt
inputs to support the peripherals of the processor. Table 2
describes the inputs to the CEC, identifies their names in the
event vector table (EVT), and lists their priorities.
System Interrupt Controller (SIC)
The system interrupt controller provides the mapping and rout-
ing of events from the many peripheral interrupt sources to the
prioritized general-purpose interrupt inputs of the CEC.
Although the processor provides a default mapping, the user
can alter the mappings and priorities of interrupt events by writ-
ing the appropriate values into the interrupt assignment
registers (SIC_IARx). Table 3 describes the inputs into the SIC
and the default mappings into the CEC.
Event Control
The processor provides a very flexible mechanism to control the
processing of events. In the CEC, three registers are used to
coordinate and control events. Each register is 16 bits wide.
• CEC interrupt latch register (ILAT) – Indicates when
events have been latched. The appropriate bit is set when
the processor has latched the event and is cleared when the
Preliminary Technical Data
Table 2. Core Event Controller (CEC)
Priority
(0 is Highest)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Event Class
Emulation/Test Control
RESET
Nonmaskable Interrupt
Exception
Reserved
Hardware Error
Core Timer
General-Purpose Interrupt 7
General-Purpose Interrupt 8
General-Purpose Interrupt 9
General-Purpose Interrupt 10
General-Purpose Interrupt 11
General-Purpose Interrupt 12
General-Purpose Interrupt 13
General-Purpose Interrupt 14
General-Purpose Interrupt 15
EVT Entry
EMU
RST
NMI
EVX
IVHW
IVTMR
IVG7
IVG8
IVG9
IVG10
IVG11
IVG12
IVG13
IVG14
IVG15
event has been accepted into the system. This register is
updated automatically by the controller, but it may be writ-
ten only when its corresponding IMASK bit is cleared.
• CEC interrupt mask register (IMASK) – Controls the
masking and unmasking of individual events. When a bit is
set in the IMASK register, that event is unmasked and is
processed by the CEC when asserted. A cleared bit in the
IMASK register masks the event, preventing the processor
from servicing the event even though the event may be
latched in the ILAT register. This register may be read or
written while in supervisor mode. (Note that general-pur-
pose interrupts can be globally enabled and disabled with
the STI and CLI instructions, respectively.)
• CEC interrupt pending register (IPEND) – The IPEND
register keeps track of all nested events. A set bit in the
IPEND register indicates the event is currently active or
nested at some level. This register is updated automatically
by the controller but may be read while in supervisor mode.
The SIC allows further control of event processing by providing
three pairs of 32-bit interrupt control and status registers. Each
register contains a bit, corresponding to each of the peripheral
interrupt events shown in Table 3.
• SIC interrupt mask registers (SIC_IMASK) – Control the
masking and unmasking of each peripheral interrupt event.
When a bit is set in these registers, that peripheral event is
unmasked and is processed by the system when asserted. A
cleared bit in the register masks the peripheral event, pre-
venting the processor from servicing the event.
• SIC interrupt status registers (SIC_ISR) – As multiple
peripherals can be mapped to a single event, these registers
allow the software to determine which peripheral event
Rev. PrC | Page 6 of 46 | August 2010

6 Page









ADSP-BF592 pdf, datenblatt
www.DataSheet.in
ADSP-BF592
fCCLKRED is the reduced core clock frequency
VDDINTNOM is the nominal internal supply voltage
VDDINTRED is the reduced internal supply voltage
TNOM is the duration running at fCCLKNOM
TRED is the duration running at fCCLKRED
VOLTAGE REGULATION
The ADSP-BF592 processor requires an external voltage regula-
tor to power the VDDINT domain. To reduce standby power
consumption, the external voltage regulator can be signaled
through EXT_WAKE to remove power from the processor core.
This signal is high-true for power-up and may be connected
directly to the low-true shut-down input of many common
regulators.
While in the hibernate state, the external supply, VDDEXT, can
still be applied, eliminating the need for external buffers. The
external voltage regulator can be activated from this power
down state by asserting the RESET pin, which then initiates a
boot sequence. EXT_WAKE indicates a wakeup to the external
voltage regulator.
The power good (PG) input signal allows the processor to start
only after the internal voltage has reached a chosen level. In this
way, the startup time of the external regulator is detected after
hibernation. For a complete description of the power good
functionality, refer to the ADSP-BF59x Blackfin Processor Hard-
ware Reference.
CLOCK SIGNALS
The processor can be clocked by an external crystal, a sine wave
input, or a buffered, shaped clock derived from an external
clock oscillator.
If an external clock is used, it should be a TTL-compatible signal
and must not be halted, changed, or operated below the speci-
fied frequency during normal operation. This signal is
connected to the processor’s CLKIN pin. When an external
clock is used, the XTAL pin must be left unconnected.
Alternatively, because the processor includes an on-chip oscilla-
tor circuit, an external crystal may be used. For fundamental
frequency operation, use the circuit shown in Figure 4. A paral-
lel-resonant, fundamental frequency, microprocessor-grade
crystal is connected across the CLKIN and XTAL pins. The on-
chip resistance between CLKIN and the XTAL pin is in the
500 kΩ range. Further parallel resistors are typically not recom-
mended. The two capacitors and the series resistor shown in
Figure 4 fine tune phase and amplitude of the sine frequency.
The capacitor and resistor values shown in Figure 4 are typical
values only. The capacitor values are dependent upon the crystal
manufacturers’ load capacitance recommendations and the PCB
physical layout. The resistor value depends on the drive level
Preliminary Technical Data
specified by the crystal manufacturer. The user should verify the
customized values based on careful investigations on multiple
devices over temperature range.
BLACKFIN
CLKBUF
EN
EN
SELECT
CLKOUT (SCLK)
TO PLL CIRCUITRY
560
EXTCLK
CLKIN
330 *
XTAL
FOR OVERTONE
OPERATION ONLY:
18 pF *
18 pF *
NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING
ON THE CRYSTAL AND LAYOUT. PLEASE ANALYZE CAREFULLY. FOR
FREQUENCIES ABOVE 33 MHz, THE SUGGESTED CAPACITOR VALUE
OF 18 pF SHOULD BE TREATED AS A MAXIMUM, AND THE SUGGESTED
RESISTOR VALUE SHOULD BE REDUCED TO 0 .
Figure 4. External Crystal Connections
A third-overtone crystal can be used for frequencies above 25
MHz. The circuit is then modified to ensure crystal operation
only at the third overtone, by adding a tuned inductor circuit as
shown in Figure 4. A design procedure for third-overtone oper-
ation is discussed in detail in application note (EE-168) Using
Third Overtone Crystals with the ADSP-218x DSP on the Analog
Devices website (www.analog.com)—use site search on
“EE-168.”
The Blackfin core runs at a different clock rate than the on-chip
peripherals. As shown in Figure 5, the core clock (CCLK) and
system peripheral clock (SCLK) are derived from the input
clock (CLKIN) signal. An on-chip PLL is capable of multiplying
the CLKIN signal by a programmable 5× to 64× multiplication
factor (bounded by specified minimum and maximum VCO
frequencies). The default multiplier is 6×, but it can be modified
by a software instruction sequence.
On-the-fly frequency changes can be effected by simply writing
to the PLL_DIV register. The maximum allowed CCLK and
SCLK rates depend on the applied voltages VDDINT and VDDEXT;
the VCO is always permitted to run up to the frequency speci-
fied by the part’s instruction rate. The CLKOUT pin reflects the
SCLK frequency to the off-chip world. The pin functions as a
reference signal in many timing specifications. While three-
stated by default, it can be enabled using the VRCTL register.
All on-chip peripherals are clocked by the system clock (SCLK).
The system clock frequency is programmable by means of the
SSEL3–0 bits of the PLL_DIV register. The values programmed
into the SSEL fields define a divide ratio between the PLL output
(VCO) and the system clock. SCLK divider values are 1 through
15. Table 6 illustrates typical system clock ratios.
Rev. PrC | Page 12 of 46 | August 2010

12 Page





SeitenGesamt 30 Seiten
PDF Download[ ADSP-BF592 Schematic.PDF ]

Link teilen




Besondere Datenblatt

TeilenummerBeschreibungHersteller
ADSP-BF592Blackfin Embedded ProcessorAnalog Devices
Analog Devices

TeilenummerBeschreibungHersteller
CD40175BC

Hex D-Type Flip-Flop / Quad D-Type Flip-Flop.

Fairchild Semiconductor
Fairchild Semiconductor
KTD1146

EPITAXIAL PLANAR NPN TRANSISTOR.

KEC
KEC


www.Datenblatt-PDF.com       |      2020       |      Kontakt     |      Suche