Datenblatt-pdf.com


89S51 Schematic ( PDF Datasheet ) - ATMEL Corporation

Teilenummer 89S51
Beschreibung 8-bit Microcontroller
Hersteller ATMEL Corporation
Logo ATMEL Corporation Logo 




Gesamt 30 Seiten
89S51 Datasheet, Funktion
www.DataSheet4U.com
Features
Compatible with MCS®-51 Products
4K Bytes of In-System Programmable (ISP) Flash Memory
– Endurance: 1000 Write/Erase Cycles
4.0V to 5.5V Operating Range
Fully Static Operation: 0 Hz to 33 MHz
Three-level Program Memory Lock
128 x 8-bit Internal RAM
32 Programmable I/O Lines
Two 16-bit Timer/Counters
Six Interrupt Sources
Full Duplex UART Serial Channel
Low-power Idle and Power-down Modes
Interrupt Recovery from Power-down Mode
Watchdog Timer
Dual Data Pointer
Power-off Flag
Fast Programming Time
Flexible ISP Programming (Byte and Page Mode)
Green (Pb/Halide-free) Packaging Option
1. Description
The AT89S51 is a low-power, high-performance CMOS 8-bit microcontroller with 4K
bytes of In-System Programmable Flash memory. The device is manufactured using
Atmel’s high-density nonvolatile memory technology and is compatible with the indus-
try-standard 80C51 instruction set and pinout. The on-chip Flash allows the program
memory to be reprogrammed in-system or by a conventional nonvolatile memory pro-
grammer. By combining a versatile 8-bit CPU with In-System Programmable Flash on
a monolithic chip, the Atmel AT89S51 is a powerful microcontroller which provides a
highly-flexible and cost-effective solution to many embedded control applications.
The AT89S51 provides the following standard features: 4K bytes of Flash, 128 bytes
of RAM, 32 I/O lines, Watchdog timer, two data pointers, two 16-bit timer/counters, a
five-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator,
and clock circuitry. In addition, the AT89S51 is designed with static logic for operation
down to zero frequency and supports two software selectable power saving modes.
The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and
interrupt system to continue functioning. The Power-down mode saves the RAM con-
tents but freezes the oscillator, disabling all other chip functions until the next external
interrupt or hardware reset.
8-bit
Microcontroller
with 4K Bytes
In-System
Programmable
Flash
AT89S51
2487C–MICRO–03/05






89S51 Datasheet, Funktion
www.DataSheet4U.com
4.12 PSEN
4.13 EA/VPP
4.14 XTAL1
4.15 XTAL2
In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be
used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped dur-
ing each access to external data memory.
If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set,
ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high.
Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.
Program Store Enable (PSEN) is the read strobe to external program memory.
When the AT89S51 is executing code from external program memory, PSEN is activated twice
each machine cycle, except that two PSEN activations are skipped during each access to exter-
nal data memory.
External Access Enable. EA must be strapped to GND in order to enable the device to fetch
code from external program memory locations starting at 0000H up to FFFFH. Note, however,
that if lock bit 1 is programmed, EA will be internally latched on reset.
EA should be strapped to VCC for internal program executions.
This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming.
Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting oscillator amplifier
5. Special Function Registers
A map of the on-chip memory area called the Special Function Register (SFR) space is shown in
Table 5-1.
Note that not all of the addresses are occupied, and unoccupied addresses may not be imple-
mented on the chip. Read accesses to these addresses will in general return random data, and
write accesses will have an indeterminate effect.
6 AT89S51
2487C–MICRO–03/05

6 Page









89S51 pdf, datenblatt
www.DataSheet4U.com
Figure 10-1. Interrupt Sources
INT0
0
1
IE0
TF0
INT1
0
1
IE1
TF1
TI
RI
11. Oscillator Characteristics
XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier that can be
configured for use as an on-chip oscillator, as shown in Figure 11-1. Either a quartz crystal or
ceramic resonator may be used. To drive the device from an external clock source, XTAL2
should be left unconnected while XTAL1 is driven, as shown in Figure 11-2. There are no
requirements on the duty cycle of the external clock signal, since the input to the internal clock-
ing circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low
time specifications must be observed.
Figure 11-1. Oscillator Connections
C2
XTAL2
C1
XTAL1
GND
Note: C1, C2 = 30 pF ± 10 pF for Crystals
= 40 pF ± 10 pF for Ceramic Resonators
12 AT89S51
2487C–MICRO–03/05

12 Page





SeitenGesamt 30 Seiten
PDF Download[ 89S51 Schematic.PDF ]

Link teilen




Besondere Datenblatt

TeilenummerBeschreibungHersteller
89S518-bit MicrocontrollerATMEL Corporation
ATMEL Corporation
89S52 AT89S52ATMEL Corporation
ATMEL Corporation

TeilenummerBeschreibungHersteller
CD40175BC

Hex D-Type Flip-Flop / Quad D-Type Flip-Flop.

Fairchild Semiconductor
Fairchild Semiconductor
KTD1146

EPITAXIAL PLANAR NPN TRANSISTOR.

KEC
KEC


www.Datenblatt-PDF.com       |      2020       |      Kontakt     |      Suche