Datenblatt-pdf.com


AD8091 Schematic ( PDF Datasheet ) - Analog Devices

Teilenummer AD8091
Beschreibung (AD8091 / AD8092) High Speed Rail-to-Rail Amplifiers
Hersteller Analog Devices
Logo Analog Devices Logo 




Gesamt 20 Seiten
AD8091 Datasheet, Funktion
FEATURES
Low cost single (AD8091) and dual (AD8092) amplifiers
Fully specified at +3 V, +5 V, and ±5 V supplies
Single-supply operation
Output swings to within 25 mV of either rail
High speed and fast settling on 5 V
110 MHz, −3 dB bandwidth (G = +1)
145 V/μs slew rate
50 ns settling time to 0.1%
Good video specifications (G = +2)
Gain flatness of 0.1 dB to 20 MHz; RL = 150 Ω
0.03% differential gain error; RL = 1 kΩ
0.03%differential phase error; RL = 1 kΩ
Low distortion
−80 dBc total harmonic @ 1 MHz; RL = 100 Ω
Outstanding load drive capability
Drives 45 mA, 0.5 V from supply rails
Drives 50 pF capacitive load (G = +1)
Low power of 4.4 mA per amplifier
APPLICATIONS
Coaxial cable drivers
Active filters
Video switchers
Professional cameras
CCD imaging systems
CDs/DVDs
Clock buffers
GENERAL DESCRIPTION
The AD8091 (single) and AD8092 (dual) are low cost, voltage
feedback, high speed amplifiers designed to operate on +3 V,
+5 V, or ±5 V supplies. The AD8091/AD8092 have true single-
supply capability, with an input voltage range extending 200 mV
below the negative rail and within 1 V of the positive rail.
Despite their low cost, the AD8091/AD8092 provide excellent
overall performance and versatility. The output voltage swing
extends to within 25 mV of each rail, providing the maximum
output dynamic range with excellent overdrive recovery. This
makes the AD8091/AD8092 useful for video electronics, such
as cameras, video switchers, or any high speed portable equip-
ment. Low distortion and fast settling make them ideal for
active filter applications.
Low Cost, High Speed
Rail-to-Rail Amplifiers
AD8091/AD8092
CONNECTION DIAGRAMS
NC 1
–IN 2
+IN 3
–VS 4
AD8091
8 NC
7 +VS
6 VOUT
5 NC
NC = NO CONNECT
Figure 1. SOIC-8 (R-8)
VOUT 1
–VS 2
+IN 3
AD8091
5 +VS
4 –IN
Figure 2. SOT23-5 (RJ-5)
OUT1 1
–IN1 2
+IN1 3
–VS 4
AD8092
8 +VS
7 OUT
6 –IN2
5 +IN2
NC = NO CONNECT
Figure 3. MSOP-8 and SOIC-8 (RM-8, R-8)
The AD8091/AD8092 offer a low power supply current and can
operate on a single 3 V power supply. These features are ideally
suited for portable and battery-powered applications where size
and power are critical.
The wide bandwidth and fast slew rate make these amplifiers
useful in many general-purpose, high speed applications where
dual power supplies of up to ±6 V and single supplies from +3
V to +12 V are needed.
This low cost performance is offered in an 8-lead SOIC
(AD8091/AD8092), a tiny SOT23-5 (AD8091), and an MSOP
(AD8092).
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarksandregisteredtrademarksarethepropertyoftheirrespectiveowners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2002–2007 Analog Devices, Inc. All rights reserved.






AD8091 Datasheet, Funktion
AD8091/AD8092
ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter
Supply Voltage
Power Dissipation
Common-Mode Input Voltage
Differential Input Voltage
Output Short-Circuit Duration
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering 10 sec)
Rating
12.6 V
See Figure 4
±VS
±2.5 V
See Figure 4
−65°C to +125°C
−40°C to +85°C
300°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
Rev. C | Page 6 of 20

6 Page









AD8091 pdf, datenblatt
AD8091/AD8092
LAYOUT, GROUNDING, AND BYPASSING CONSIDERATIONS
POWER SUPPLY BYPASSING
Power supply pins are actually inputs, and care must be taken so
that a noise-free stable dc voltage is applied. The purpose of
bypass capacitors is to create low impedances from the supply
to ground at all frequencies, thereby shunting or filtering a
majority of the noise.
Decoupling schemes are designed to minimize the bypassing
impedance at all frequencies with a parallel combination of
capacitors. Chip capacitors of 0.01 μF or 0.001 μF (X7R or
NPO) are critical and should be as close as possible to the
amplifier package. Larger chip capacitors, such as the 0.1 μF
capacitor, can be shared among a few closely spaced active
components in the same signal path. A 10 μF tantalum
capacitor is less critical for high frequency bypassing and, in
most cases, only one per board is needed at the supply inputs.
GROUNDING
A ground plane layer is important in densely packed PC boards
to spread the current-minimizing parasitic inductances.
However, an understanding of where the current flows in a
circuit is critical to implementing effective high speed circuit
design. The length of the current path is directly proportional to
the magnitude of parasitic inductances and thus the high
frequency impedance of the path. High speed currents in an
inductive ground return create an unwanted voltage noise.
The lengths of the high frequency bypass capacitor leads are
most critical. A parasitic inductance in the bypass grounding
works against the low impedance created by the bypass
capacitor. Place the ground leads of the bypass capacitors at the
same physical location. Because load currents flow from the
supplies as well, the ground for the load impedance should be at
the same physical location as the bypass capacitor grounds. For
the larger value capacitors, which are intended to be effective at
lower frequencies, the current return path distance is less
critical.
INPUT CAPACITANCE
Along with bypassing and ground, high speed amplifiers can
be sensitive to parasitic capacitance between the inputs and
ground. A few pF of capacitance reduces the input impedance
at high frequencies, in turn increasing the amplifier’s gain and
causing peaking of the frequency response or even oscillations,
if severe enough. It is recommended that the external passive
components, which are connected to the input pins, be placed
as close as possible to the inputs to avoid parasitic capacitance.
The ground and power planes must be kept at a distance of at
least 0.05 mm from the input pins on all layers of the board.
INPUT-TO-OUTPUT COUPLING
The input and output signal traces should not be parallel to
minimize capacitive coupling between the inputs and output
and to avoid any positive feedback.
Rev. C | Page 12 of 20

12 Page





SeitenGesamt 20 Seiten
PDF Download[ AD8091 Schematic.PDF ]

Link teilen




Besondere Datenblatt

TeilenummerBeschreibungHersteller
AD809155.52 MHz Frequency SynthesizerAnalog Devices
Analog Devices
AD8091(AD8091 / AD8092) High Speed Rail-to-Rail AmplifiersAnalog Devices
Analog Devices
AD8092(AD8091 / AD8092) High Speed Rail-to-Rail AmplifiersAnalog Devices
Analog Devices
AD8099Voltage Noise Op AmpAnalog Devices
Analog Devices

TeilenummerBeschreibungHersteller
CD40175BC

Hex D-Type Flip-Flop / Quad D-Type Flip-Flop.

Fairchild Semiconductor
Fairchild Semiconductor
KTD1146

EPITAXIAL PLANAR NPN TRANSISTOR.

KEC
KEC


www.Datenblatt-PDF.com       |      2020       |      Kontakt     |      Suche