DataSheet.es    


PDF AD9241 Data sheet ( Hoja de datos )

Número de pieza AD9241
Descripción Complete 14-Bit/ 1.25 MSPS Monolithic A/D Converter
Fabricantes Analog Devices 
Logotipo Analog Devices Logotipo



Hay una vista previa y un enlace de descarga de AD9241 (archivo pdf) en la parte inferior de esta página.


Total 24 Páginas

No Preview Available ! AD9241 Hoja de datos, Descripción, Manual

a
FEATURES
Monolithic 14-Bit, 1.25 MSPS A/D Converter
Low Power Dissipation: 60 mW
Single +5 V Supply
Integral Nonlinearity Error: 2.5 LSB
Differential Nonlinearity Error: 0.6 LSB
Input Referred Noise: 0.36 LSB
Complete: On-Chip Sample-and-Hold Amplifier and
Voltage Reference
Signal-to-Noise and Distortion Ratio: 78.0 dB
Spurious-Free Dynamic Range: 88.0 dB
Out-of-Range Indicator
Straight Binary Output Data
44-Pin MQFP
Complete 14-Bit, 1.25 MSPS
Monolithic A/D Converter
AD9241
FUNCTIONAL BLOCK DIAGRAM
VINA
VINB
CML
CAPT
CAPB
VREF
SENSE
SHA
CLK
AVDD
DVDD DRVDD
MDAC1
GAIN = 16
5
A/D
5
MDAC2
GAIN = 8
MDAC3
GAIN = 8
4
A/D
4
A/D
44
DIGITAL CORRECTION LOGIC
14
OUTPUT BUFFERS
A/D
4
MODE
SELECT
1V
AD9241
REFCOM
AVSS
DVSS DRVSS
OTR
BIT 1
(MSB)
BIT 14
(LSB)
PRODUCT DESCRIPTION
The AD9241 is a 1.25 MSPS, single supply, 14-bit analog-to-
digital converter (ADC). It combines a low cost, high speed
CMOS process and a novel architecture to achieve the resolution
and speed of existing hybrid implementations at a fraction of the
power consumption and cost. It is a complete, monolithic ADC
with an on-chip, high performance, low noise sample-and-hold
amplifier and programmable voltage reference. An external refer-
ence can also be chosen to suit the dc accuracy and temperature
drift requirements of the application. The device uses a multistage
differential pipelined architecture with digital output error correc-
tion logic to guarantee no missing codes over the full operating
temperature range.
The input of the AD9241 is highly flexible, allowing for easy
interfacing to imaging, communications, medical, and data-
acquisition systems. A truly differential input structure allows
for both single-ended and differential input interfaces of varying
input spans. The sample-and-hold amplifier (SHA) is equally
suited for both multiplexed systems that switch full-scale voltage
levels in successive channels as well as sampling single-channel
inputs at frequencies up to and beyond the Nyquist rate. Also,
the AD9241 performs well in communication systems employ-
ing Direct-IF Down Conversion since the SHA in the differen-
tial input mode can achieve excellent dynamic performance well
beyond its specified Nyquist frequency of 0.625 MHz.
A single clock input is used to control all internal conversion
cycles. The digital output data is presented in straight binary
output format. An out-of-range (OTR) signal indicates an over-
flow condition which can be used with the most significant bit
to determine low or high overflow.
PRODUCT HIGHLIGHTS
The AD9241 offers a complete single-chip sampling 14-bit,
analog-to-digital conversion function in a 44-pin Metric Quad
Flatpack.
Low Power and Single Supply
The AD9241 consumes only 60 mW on a single +5 V power
supply.
Excellent DC Performance Over Temperature
The AD9241 provides no missing codes, and excellent tempera-
ture drift performance over the full operating temperature range.
Excellent AC Performance and Low Noise
The AD9241 provides nearly 13 ENOB performance and has an
input referred noise of 0.36 LSB rms.
Flexible Analog Input Range
The versatile onboard sample-and-hold (SHA) can be configured
for either single-ended or differential inputs of varying input spans.
Flexible Digital Outputs
The digital outputs can be configured to interface with +3 V and
+5 V CMOS logic families.
REV. 0
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700 World Wide Web Site: http://www.analog.com
Fax: 617/326-8703
© Analog Devices, Inc., 1997

1 page




AD9241 pdf
AD9241
PIN FUNCTION DESCRIPTIONS
Pin
Number Name
Description
1
2, 29
3
4, 28
5
6
7
8–10
11
12–23
24
25
26, 27, 30
31
32
33
34, 35, 38
40, 43, 44
36
37
39
41
42
DVSS
AVSS
DVDD
AVDD
DRVSS
DRVDD
CLK
NC
BIT 14
BIT 13–BIT 2
BIT 1
OTR
NC
SENSE
VREF
REFCOM
NC
Digital Ground
Analog Ground
+5 V Digital Supply
+5 V Analog Supply
Digital Output Driver Ground
Digital Output Driver Supply
Clock Input Pin
No Connect
Least Significant Data Bit (LSB)
Data Output Bits
Most Significant Data Bit (MSB)
Out of Range
No Connect
Reference Select
Reference I/O
Reference Common
No Connect
CAPB
CAPT
CML
VINA
VINB
Noise Reduction Pin
Noise Reduction Pin
Common-Mode Level (Midsupply)
Analog Input Pin (+)
Analog Input Pin (–)
DEFINITIONS OF SPECIFICATION
INTEGRAL NONLINEARITY (INL)
INL refers to the deviation of each individual code from a line
drawn from “negative full scale” through “positive full scale.”
The point used as “negative full scale” occurs 1/2 LSB before
the first code transition. “Positive full scale” is defined as a level
1 1/2 LSB beyond the last code transition. The deviation is
measured from the middle of each particular code to the true
straight line.
DIFFERENTIAL NONLINEARITY (DNL, NO MISSING
CODES)
An ideal ADC exhibits code transitions that are exactly 1 LSB
apart. DNL is the deviation from this ideal value. Guaranteed
no missing codes to 14-bit resolution indicates that all 16384
codes, respectively, must be present over all operating ranges.
ZERO ERROR
The major carry transition should occur for an analog value
1/2 LSB below VINA = VINB. Zero error is defined as the
deviation of the actual transition from that point.
GAIN ERROR
The first code transition should occur at an analog value
1/2 LSB above negative full scale. The last transition should
occur at an analog value 1 1/2 LSB below the nominal full
scale. Gain error is the deviation of the actual difference
between first and last code transitions, and the ideal differ-
ence between first and last code transitions.
OVERVOLTAGE RECOVERY TIME
Overvoltage recovery time is defined as that amount of time
required for the ADC to achieve a specified accuracy after an
overvoltage (50% greater than full-scale range), measured from
the time the overvoltage signal reenters the converter’s range.
TEMPERATURE DRIFT
The temperature drift for zero error and gain error specifies the
maximum change from the initial (+25°C) value to the value at
TMIN or TMAX.
POWER SUPPLY REJECTION
The specification shows the maximum change in full scale,
from the value with the supply at the minimum limit to the
value with the supply at its maximum limit.
APERTURE JITTER
Aperture jitter is the variation in aperture delay for successive
samples and is manifested as noise on the input to the A/D.
APERTURE DELAY
Aperture delay is a measure of the sample-and-hold amplifier
(SHA) performance and is measured from the rising edge of the
clock input to when the input signal is held for conversion.
SIGNAL-TO-NOISE AND DISTORTION (S/N+D, SINAD)
RATIO
S/N+D is the ratio of the rms value of the measured input sig-
nal to the rms sum of all other spectral components below the
Nyquist frequency, including harmonics but excluding dc.
The value for S/N+D is expressed in decibels.
EFFECTIVE NUMBER OF BITS (ENOB)
For a sine wave, SINAD can be expressed in terms of the num-
ber of bits. Using the following formula,
N = (SINAD – 1.76)/6.02
it is possible to get a measure of performance expressed as N,
the effective number of bits.
Thus, the effective number of bits for a device for sine wave
inputs at a given input frequency can be calculated directly
from its measured SINAD.
TOTAL HARMONIC DISTORTION (THD)
THD is the ratio of the rms sum of the first six harmonic
components to the rms value of the measured input signal; this
is expressed as a percentage or in decibels.
SIGNAL-TO-NOISE RATIO (SNR)
SNR is the ratio of the rms value of the measured input signal
to the rms sum of all other spectral components below the
Nyquist frequency, excluding the first six harmonics and dc.
The value for SNR is expressed in decibels.
SPURIOUS FREE DYNAMIC RANGE (SFDR)
SFDR is the difference in dB between the rms amplitude of the
input signal and the peak spurious signal.
TWO-TONE SFDR
The ratio of the rms value of either input tone to the rms value
of the peak spurious component. The peak spurious component
may or may not be an IMD product. It may be reported in dBc
(i.e., degrades as signal level is lowered) or in dBFS (always
related back to converter full scale).
REV. 0
–5–

5 Page





AD9241 arduino
AD9241
REFERENCE OPERATION
The AD9241 contains an onboard bandgap reference that pro-
vides a pin-strappable option to generate either a 1 V or 2.5 V
output. With the addition of two external resistors, the user can
generate reference voltages other than 1 V and 2.5 V. Another
alternative is to use an external reference for designs requiring
enhanced accuracy and/or drift performance. See Table II for a
summary of the pin-strapping options for the AD9241 reference
configurations.
Figure 26 shows a simplified model of the internal voltage refer-
ence of the AD9241. A pin-strappable reference amplifier buff-
ers a 1 V fixed reference. The output from the reference amplifier,
A1, appears on the VREF pin. The voltage on the VREF pin
determines the full-scale input span of the A/D. This input span
equals,
Full-Scale Input Span = 2 × VREF
TO
A/D
5k
AD9241
5k
A2
5k
DISABLE
A2
5k
LOGIC
A1
1V
DISABLE
A1
LOGIC
CAPT
CAPB
VREF
7.5k
SENSE
5k
REFCOM
Figure 26. Equivalent Reference Circuit
The voltage appearing at the VREF pin, and the state of the
internal reference amplifier, A1, are determined by the voltage
appearing at the SENSE pin. The logic circuitry contains two
comparators that monitor the voltage at the SENSE pin. The
comparator with the lowest set point (approximately 0.3 V)
controls the position of the switch within the feedback path of
A1. If the SENSE pin is tied to REFCOM, the switch is
connected to the internal resistor network thus providing a
VREF of 2.5 V. If the SENSE pin is tied to the VREF pin via a
short or resistor, the switch is connected to the SENSE pin. A
short will provide a VREF of 1.0 V while an external resistor
network will provide an alternative VREF between 1.0 V and
2.5 V. The second comparator controls internal circuitry that
will disable the reference amplifier if the SENSE pin is tied to
AVDD. Disabling the reference amplifier allows the VREF pin
to be driven by an external voltage reference.
The actual reference voltages used by the internal circuitry of
the AD9241 appear on the CAPT and CAPB pins. For proper
operation when using the internal or an external reference, it is
necessary to add a capacitor network to decouple these pins.
Figure 27 shows the recommended decoupling network. This
capacitive network performs the following three functions: (1) in
conjunction with the reference amplifier, A2, it provides a low
source impedance over a large frequency range to drive the A/D
internal circuitry, (2) it provides the necessary compensation for
A2, and (3) it bandlimits the noise contribution from the refer-
ence. The turn-on time of the reference voltage appearing be-
tween CAPT and CAPB is approximately 15 ms and should be
evaluated in any power-down mode of operation.
CAPT
AD9241
0.1µF
0.1µF
10µF
CAPB
0.1µF
Figure 27. Recommended CAPT/CAPB Decoupling Network
The A/D’s input span may be varied dynamically by changing
the differential reference voltage appearing across CAPT and
CAPB symmetrically around 2.5 V (i.e., midsupply). To change
the reference at speeds beyond the capabilities of A2, it will be
necessary to drive CAPT and CAPB with two high speed, low
noise amplifiers. In this case, both internal amplifiers (i.e., A1
and A2) must be disabled by connecting SENSE to AVDD and
VREF to REFCOM, and the capacitive decoupling network
removed. The external voltages applied to CAPT and CAPB
must be 2.5 V + Input Span/4 and 2.5 V – Input Span/4, respec-
tively where the input span can be varied between 2 V and 5 V.
Note that those samples within the pipeline A/D during any
reference transition will be corrupted and should be discarded.
Reference
Operating Mode
INTERNAL
INTERNAL
INTERNAL
EXTERNAL
(NONDYNAMIC)
EXTERNAL
(DYNAMIC)
Table II. Reference Configuration Summary
Input Span (VINA–VINB)
(V p-p)
Required VREF (V)
Connect
2
5
2 SPAN 5 AND
SPAN = 2 × VREF
2 SPAN 5
2 SPAN 5
1
2.5
1 VREF 2.5 AND
VREF = (1 + R1/R2)
1 VREF 2.5
CAPT and CAPB
Externally Driven
SENSE
SENSE
R1
R2
SENSE
VREF
SENSE
VREF
EXT. REF. 1
EXT. REF. 2
To
VREF
REFCOM
VREF AND SENSE
SENSE AND REFCOM
AVDD
EXT. REF.
AVDD
REFCOM
CAPT
CAPB
REV. 0
–11–

11 Page







PáginasTotal 24 Páginas
PDF Descargar[ Datasheet AD9241.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
AD9240Monolithic A/D ConverterAnalog Devices
Analog Devices
AD9241Complete 14-Bit/ 1.25 MSPS Monolithic A/D ConverterAnalog Devices
Analog Devices
AD9243Monolithic A/D ConverterAnalog Devices
Analog Devices
AD924414-Bit 40/65 MSPS Monolithic A/D ConverterAnalog Devices
Analog Devices

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar